Umkehrabbildung

Umkehrabbildung
(f)
обратное отображение

Немецко-русский математический словарь. 2013.

Игры ⚽ Нужно сделать НИР?

Смотреть что такое "Umkehrabbildung" в других словарях:

  • Umkehrabbildung — Die Umkehrfunktion oder inverse Funktion einer bijektiven Funktion ist die Funktion, die jedem Element der Zielmenge sein eindeutig bestimmtes Urbildelement zuweist. (Bei bijektiven Funktionen hat die Urbildmenge jedes Elements genau ein… …   Deutsch Wikipedia

  • Diffeomorph — In der Mathematik, insbesondere in den Gebieten Analysis, Differentialgeometrie und Differentialtopologie, ist ein Diffeomorphismus eine bijektive stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist. Dabei… …   Deutsch Wikipedia

  • Diffeomorphie — In der Mathematik, insbesondere in den Gebieten Analysis, Differentialgeometrie und Differentialtopologie, ist ein Diffeomorphismus eine bijektive stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist. Dabei… …   Deutsch Wikipedia

  • Diffeomorphismus — In der Mathematik, insbesondere in den Gebieten Analysis, Differentialgeometrie und Differentialtopologie, ist ein Diffeomorphismus eine bijektive, stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist. Dabei… …   Deutsch Wikipedia

  • Scantegrity — behandelt ein Prinzip, das bestimmte elektronische Wahlsysteme in Bezug auf Manipulation und Wahlgeheimnis sicherer machen soll. Dieses System wurde von David Chaum erarbeitet und stellt einen Aufsatz auf elektronische Systeme dar, die auf der… …   Deutsch Wikipedia

  • Homeomorph — Ein klassisches Beispiel für einen Homöomorphismus: eine Kaffeetasse und ein Donut – topologisch betrachtet dasselbe Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen… …   Deutsch Wikipedia

  • Homeomorphismus — Ein klassisches Beispiel für einen Homöomorphismus: eine Kaffeetasse und ein Donut – topologisch betrachtet dasselbe Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen… …   Deutsch Wikipedia

  • Homöomorph — Ein klassisches Beispiel für einen Homöomorphismus: eine Kaffeetasse und ein Donut – topologisch betrachtet dasselbe Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen… …   Deutsch Wikipedia

  • Homöomorphie — Ein klassisches Beispiel für einen Homöomorphismus: eine Kaffeetasse und ein Donut – topologisch betrachtet dasselbe Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen… …   Deutsch Wikipedia

  • Homöomorphieklasse — Ein klassisches Beispiel für einen Homöomorphismus: eine Kaffeetasse und ein Donut – topologisch betrachtet dasselbe Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen… …   Deutsch Wikipedia

  • Homöomorphismus — Ein klassisches Beispiel für einen Homöomorphismus: Die Transformation einer Kaffeetasse in einen Donut Ein Homöomorphismus (nicht zu verwechseln mit Homomorphismus und Homotopie) ist ein zentraler Begriff im mathematischen Teilgebiet Topologie.… …   Deutsch Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»